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Threshold rates for error-correcting codes



yuo alerady knwo waht an erorr-corecting c*de is!



How did you read that?
All combinations of English letters

waht

All combinations of English letters

valid English words (an 
error correcting code!)

nonsense combinations of letters

alerady

already want

wait



Distance and list-decodability

δn

pn

The closest any two legal words can be is the distance 
of a code. 

High distance makes it easier to decode.

If there are < L real words within distance p of any (real 
or not) word, then the code is (p,L)-list decodable. 

Small L makes it easier to decode.



English is not a very good error-correcting code. Many 

real words are quite similar to each other, so we can’t 

give mathematical guarantees about error correction.



Error-correcting codes

• A code  of blocklength  over an alphabet  is just   


• The rate 


• There is a trade-off between error-tolerance and rate


• We will think of  for  constant and 


• The error is adversarial 

C n Σ C ⊆ Σn

R =
log|Σ| |C |

n
= symbols you want to send

symbols you actually send

Σ = #q q n → ∞



Random codes and random linear codes

•  is a finite field.  

•  E.g.,  with arithmetic mod 2.


•   is a subspace.

•  A random linear code (RLC) of dimension k is a random 
subspace of dimension k.

•  Rate = k/n.

# 
# = #2 = {0,1}

C ≤ #n

•   is the alphabet.  

•   is a subset.

•  A random code (RC) of ‘expected’ rate R is chosen so 
that each  is included in  with probability 

.

Σ
C ⊆ Σn

x ∈ Σn C
|Σ |− n(1− R)



• What is the distance of a 
code?

Questions about the combinatorics of codes

δn

pn

• What is the list-decodability 
of a code?



Distance of random linear codes

"∗

1

1

R* = 1 − hq(δ)Probability of a random 
dimensional subspace 
having distance at least 

#

$

Distance = 
minx≠ y∈ C  Hamming(x, y)

n

hq(x) = x logq(q − 1) − x logq(x) − (1 − x)logq(1 − x)



List-decodability of completely random codes

pn

Probability of a random

code being -list-
decodable

(p, O(1))

A code  is -list decodable if for all C ⊆ #n
q (p, L)

x ∈ #n
q, |Bpn(x) ∩ C | < L .

"∗

1

1

R* = 1 − hq(p)



Threshold rates

• If , then random 
[linear] code satisfies property 
w.h.p.


• If , then random 
[linear] code does not satisfy 
property w.h.p.

R ≤ R* − ε

R ≥ R* + ε

"∗

1

1

Probability that a 
random [linear] 
code satisfies a 
cool property .
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1. All local properties of RLCs have a threshold rate and we 
characterize it.


2. All symmetric  properties of RCs have a threshold rate and we 
characterize it.


3. Both local and symmetric are broad classes of properties, and 
include distance, list-decodability and many natural properties.


4. We show that LDPC codes achieve every local property a 
random linear code achieves.

PART I: Informal results


A. Characterization theorems



What is the list-size of a binary RLC of rate R = 1 - h(p) - /?

2002

 codes with list-size ∃ ≤ 1/ε

2011

w.h.p. list-size is ≤ cp/ε

2013-2018

improvements in  in some settings...cp

2020

, , h(p)/ε h(p)/ε + 1 h(p)/ε + 2

PART I: Informal results


B.   Some applications

1970s

≤ 21/ε

[ZP81], [GHSZ02], [GHK11], [CGV13], [Woo13], [RW18], [LW18], [GLMRSW20] and others



PART I: Informal results


B.   Some applications

•  List-size for list-recovery of a random linear code of rate  is   


•  The threshold rate for a random code to be a perfect hashing code is   




• Threshold rates for list decodability.


•  Further results about list-recovery of random codes

R* − ε ℓΩ(1/ε)

R* = 1
q

logq ( 1
1 − q!/qq )

(p,3)−
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• Many code properties are satisfied  no bad set of vectors lies in the code.


• E.g. code -list dec  contains no bad set of  vectors in a radius  ball.

⟺
(p, L) ⟺ L p

PART II: Proof outline for RLCs


A. Local properties



• Group these bad sets of codewords which define property into collections of 
bad types (special distributions).


• Then: property is satisfied  no set of codewords with such a bad type is 
in code.

⟺

PART II: Proof outline for RLCs


A. Local properties

b1 =

a
a
⋮
a
c
⋮
c
c

b2 =

a
a
⋮
a
b
⋮
b
b

b3 =

b
b
⋮
b
b
⋮
b
b

B =

a a b
a a b

⋮
a a b
c b b

⋮
c b b
c b b



B =

a a b
a a b

⋮
a a b
c b b

⋮
c b b
c b b

B′ � =

a a b
a a b

⋮
c b b
a a b

⋮
c b b
c b b

B′�′� =

a a b
c b b

⋮
a a b
c b b

⋮
a a b
c b b

0

0.15

0.3

0.45

0.6

(a, a, b) (c, b, b)

PART II: Proof outline for RLCs


A. Local properties (Types)

• Two matrices  are the same type if they are row permutations of each other.

• A type is the empirical distribution of the rows of a matrix.

• Here,  is a distribution over   such that 

 and  for all other  in .

B, B′ �

type(B) = type(B′�) = type(B′�′�) = β Σ3

β(a, a, b) = β(c, b, b) = 0.5 β(x) = 0 x Σ3



PART II: Proof outline for RLCs


A. Local properties

pn

B =

α11 α12 α13
α21 α22 α23

⋮
⋮

αn1 αn2 αn3

x =

x1
x2
⋮
xn

pn

πB = π

α11 α12 α13
α21 α22 α23

⋮
⋮

αn1 αn2 αn3

πx = π

x1
x2
⋮
xn

• An -local property  is defined by a set of bad types  over .


•  is satisfied  no bad type from  is in code.

ℓ . T #ℓ
q

. ⟺ T



PART II: Proof outline for RLCs


   B.  Threshold for containing a type

"1R5(β)

/∃β

• Let  be a random linear code of rate  over   


• If  is an  matrix of full rank, then 


• Say that  had type 


• By union bound, 


• This is  if  for 


• We define 

C R #n
q

B n × ℓ Pr(B ⊂ C) = q− nℓ(1− R)

B β

Pr(∃M ⊂ C of type β) ≤ qn(Hq(β)− (1− R)ℓ)

o(1) R ≤ 1 −
Hq(β)

ℓ
− ε ε > 0

1 −
Hq(β)
d(β) = R5(β)



PART II: Proof outline for RLCs


   B.  Threshold for containing a type

B =

a a b
a a b

⋮
a a b
c b b

⋮
c b b
c b b

 of type β

"1R5(β)

/∃β

"1R5(βT)

/∃βT

If you cannot find  in the code, you certainly cannot find  in the code.βT β

⟹ BT =

a a b
a a b

⋮
a a b
c b b

⋮
c b b
c b b

 of type βT

[ [

T



PART II: Proof outline for RLCs


   B.  Threshold for containing a type (implied types)

/∃β

• If we want to compute the largest  such 
that  is unlikely to be in the code, we need 
at least to account for  for all .


• We denote the set of all ,  which are the 
‘implied types of ’,   by .


• So   is unlikely to be in the code until rate 
at least .

R
β

R5(βT) T

βT
β ℐβ

β
max
β′�∈ ℐβ

R5(β′�)1R5(βT)



PART II: Proof outline for RLCs


   B.  Threshold for containing a type (second moment method)

1

R*(β) = max
β′�∈ ℐβ

R5(β′�)

"

/∃β ∃β

max
β′�∈ ℐβ

R5(β′�) "1

/∃β ?



PART II: Proof outline for RLCs


   B.  Threshold for containing a type

R*(.) = max
β′�∈ ℐβ

R5(β′�) "1

/∃β ∃β

1

Suppose property  is satisfied  no set of codewords with 
type  is in the code. Then we have computed .

. ⟺
β R*(.)
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PART III: Formal results


A. Characterization theorem for RLCs

• Given local property defined by exclusion of sets of  vectors whose types lie 
in a set 


• If , then random linear code satisfies property w.h.p.


• If , then random linear code does not satisfy property w.h.p.

ℓ
T

R ≤ R* − ε

R ≥ R* + ε

R* = min
τ∈ T ( max

τ′ �∈ ℐτ

R5(τ′�))



• Given symmetric property defined by exclusion of sets of  vectors whose 
types lie in a set 


• If , then random code satisfies property w.h.p.


• If , then random code does not satisfy property w.h.p.

ℓ
T

R ≤ R* − ε

R ≥ R* + ε

R* = min
τ∈ T

R5(τ)

PART III: Formal results


   B.  Characterization theorem for RCs
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PART IV: LDPC Codes


A. Definitions

•  Low-Density Parity-Check (LDPC) codes.

•  Very fast decoding algorithms.

•  Ubiquitous in theory and practice.


•  Gallager showed that they achieve GV bound over binary alphabets (1960s).

•  What about other combinatorial properties?

•  Are they (combinatorially) list-decodable?

Random* Sparse Matrix

1
1

1
1

1
1

1
1

1
1

1

1{ {
ker =



PART IV: LDPC Codes


B.  Reduction

• If RLC of rate R satisfies a local property  w.h.p.


• Then LDPC code of rate R also satisfies  w.h.p.


.

.

LDPC codes achieve every local property RLCs achieve!

⟹



PART IV: LDPC Codes


B.  Reduction (proof idea)

• Let  be an  matrix of full rank and column distance 


•  For RLC of rate , 


•  For any L such that LDPC code of rate ,   

• L depends on 

B n × ℓ δ

R Pr(B ⊂ C) = q− nℓ(1− R)

ε > 0,∃ R Pr(B ⊂ C) = q− nℓ(1− ε)(1− R)

ε, δ, q, ℓ



Applications to LDPC codes, list-sizes of RLCs 
and RCs, and other natural properties.

Random* Sparse Matrix

1
1

1
1

1
1

1
1

1
1

1

1

Large classes of natural properties have threshold rates.
"∗

1

1

The threshold rate has a nice characterization.

R*RLC = min
τ∈ T ( max

τ′ �∈ ℐτ

R5(τ′�))
R*RC = min

τ∈ T
R5(τ)

We wanted to understand the relation between combinatorial 
properties of random [linear] codes and their rate.

Conclusion




Open questions


1. Other applications of our characterization theorems?


2. Algorithms for list-decoding LDPC codes?


3. Many more…

LDPC codes achieve list-decoding capacity 
Mosheiff, Resch, Ron-Zewi, S., Wootters

FOCS 2020, arXiv:1909.06430

Bounds for list-decoding and list-recovery of random linear codes   
Guruswami, Li, Mosheiff, Resch, S., Wootters

RANDOM 2020, arXiv:2004.13247 

Sharp threshold rates for random codes 
Guruswami, Mosheiff, Resch, S., Wootters

ITCS 2021, arXiv:2009.04553



Questions?


ability to ignore 
practical concerns 

lifethesis defense


